The Honey BEE

The Honey BEE

(“And thy Lord taught the Bee to build its cells in hills, on trees, and in (men’s) habitations; *Then to eat of all the produce (of the earth), and find with skill the spacious paths of its Lord: there issues from within their bodies a drink of varying colours, wherein is healing for men: verily in this is a Sign for those who give thought”) (16: 68, 69).
It is well known by almost everyone that honey is a fundamental food source for the human body, whereas only a few people are aware of the extraordinary qualities of its producer, the honeybee.
As we know, the food source of bees is nectar, which is not found during winter. For this reason, they combine the nectar collected in [the] summertime with special secretions of their body, produce a new nutrient – honey – and store it for the coming winter months.
It is noteworthy that the amount of honey stored by bees is much greater than their actual need. The first question that comes to mind is why do the bees not give up this “excess production”, which seems a waste of time and energy for them? The answer to this question is hidden in the “inspiration” stated in the verse to have been given the bee.
Bees produce honey not only for themselves but also for human beings. Bees, like many other natural beings, are also dedicated to the service of man, just as the chicken lays at least one egg a day although it does not need it, and the cow produces much more milk than its offspring needs.
(“And He has made everything in the heavens and everything in the earth subservient to you. It is all from Him. There are certainly signs in that for people who reflect.”) (45: 13)


The bees’ lives in the hive and their honey production are fascinating. Without going into too much detail, let us discover the basic features of the “social life” of bees. Bees must carry out numerous “tasks” and they manage all of them with excellent organization.
Regulation of humidity and ventilation: The humidity of the hive, which gives honey its highly protective quality, must be kept within certain limits. If humidity is over or under those limits, then the honey is spoiled and loses its protective and nutritious qualities. Similarly, the temperature in the hive has to be 32° C throughout 10 months of the year. In order to keep the temperature and humidity of the hive within certain limits, a special group takes charge of “ventilation”.
On a hot day, bees can easily be observed ventilating the hive. The entrance of the hive fills with bees and clamping themselves to the wooden structure, they fan the hive with their wings. In a standard hive, air entering from one side is forced to leave from the other side. Extra ventilator bees work within the hive to push the air to all corners of the hive.
This ventilation system is also useful in protecting the hive from smoke and air pollution.

Health system

The efforts of the bees to preserve the quality of honey are not limited to the regulation of humidity and heat. A perfect health care system exists within the hive to keep all events that may result in the production of bacteria under control. The main purpose of this system is to remove all substances likely to cause bacterial production. The basic principle of this health system is to prevent foreign substances from entering the hive. To secure this, two guardians are always kept at the entrance of the hive. If a foreign substance or insect enters the hive despite this precaution, all bees act to remove it from the hive.
How do bees know that this substance is an ideal substance for embalming? How do bees produce a substance, which man can only produce in laboratory conditions and with the use of technology if he has a certain level of knowledge of chemistry? How do they know that a dead insect causes bacteria production and that embalming will prevent this?
For bigger foreign objects that cannot be removed from the hive, another protection mechanism is used. Bees “embalm” these foreign objects. They produce a substance called “propolis (bee resin)” with which they carry out the “embalming” process. Produced by adding special secretions to the resins they collect from trees like pine, poplar and acacia, the bee resin is also used to patch cracks in the hive. After being applied to the cracks by the bees, the resin dries as it reacts with air and forms a hard surface. Thus, it can stand against all kinds of external threats. Bees use this substance in most of their work.
At this point, many questions spring to mind. Propolis has the feature of not allowing any bacteria to live in it. This makes propolis an ideal substance for embalming.
And in your creation and all the creatures He has scattered about there are signs for people with certainty.
It is evident that the bee has neither any knowledge on this subject, nor a laboratory in its body.


Bees construct hives in which 30,000 bees can live and work together by shaping small portions of beeswax.
The hive is made up of beeswax-walled honeycombs, which have hundreds of tiny cells on each of their faces. All honeycomb cells are exactly the same size. This engineering miracle is achieved by the collective work of thousands of bees. Bees use these cells for food storage and the maintenance of young bees.
Bees have been using the hexagonal structure for the construction of honeycombs for millions of years. (A bee fossil has been found dating from 100 million years ago). It is astonishing that they have chosen a hexagonal structure rather than an octagonal, or pentagonal. Mathematicians give the reason: “the hexagonal structure is the most suitable geometric form for the maximum use of unit area.” If honeycomb cells were constructed in another form, then there would be areas left unused; thus, less honey would be stored, and fewer bees would be able to benefit from it.
As long as their depths are the same, a triangular or quadrangular cell would hold the same amount of honey as a hexagonal cell. However, among all these geometric forms, the hexagonal has the shortest circumference. Whilst they have the same volume, the amount of wax required for hexagonal cells is less than the amount of wax required for a triangular or quadrangular one.
The conclusion: hexagonal cells require minimal amounts of wax in terms of construction while they store maximal amounts of honey. Bees themselves surely cannot have calculated this result, obtained by man after many complex geometrical calculations. These tiny animals use the hexagonal form innately, just because they are taught and “inspired” so by their Lord.
The hexagonal design of cells is practical in many respects. Cells fit to one another and they share each other’s walls. This, again, ensures maximum storage with minimum wax. Although the walls of the cells are rather thin, they are strong enough to carry a few times their own weight.
As well as in the walls of the sides of the cells, bees also take the maximum saving principle into consideration while they construct the bottom edges.
Combs are built as a slice with two rows lying back to back. In this case, the problem of the junction point of two cells occurs. Constructing the bottom surfaces of cells by combining three equilateral quadrangles solves this problem. When three cells are built on one face of the comb, the bottom surface of one cell on the other face is automatically constructed.
As the bottom surface is composed of equilateral quadrangular wax plaques, a downward deepening is observed at the bottom of those cells made by this method. This means an increase in the volume of the cell and, thus, in the amount of honey stored.
 (“And thy Lord taught the Bee to build its cells in hills, on trees, and in (men’s) habitations; * Then to eat of all the produce (of the earth), and find with skill the spacious paths of its Lord: there issues from within their bodies a drink of varying colours, wherein is healing for men: verily in this is a Sign for those who give thought”) (16: 68, 69).

No comments:

Post a Comment